The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic (2024)

1. Hooper DC, Jacoby GA. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med. (2016) 6:a025320. 10.1101/cshperspect.a025320 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Yang Y, Niehaus KE, Walker TM, Iqbal Z, Walker AS, Wilson DJ, et al.. Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data. Bioinformatics. (2018) 34:1666–71. 10.1093/bioinformatics/btx801 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Heidary M, Nasiri MJ. Why has HIV/AIDS prevalence increased in Iran?Clin Infect Dis. (2016) 63:846. 10.1093/cid/ciw361 [PubMed] [CrossRef] [Google Scholar]

4. Mabonga E, Parkes-Ratanshi R, Riedel S, Nabweyambo S, Mbabazi O, Taylor C, et al.. Complete ciprofloxacin resistance in gonococcal isolates in an urban Ugandan clinic: findings from a cross-sectional study. Int J STD AIDS. (2019) 30:256–63. 10.1177/0956462418799017 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Campoli-Richards DM, Monk JP, Price A, Benfield P, Todd PA, Ward A. Ciprofloxacin. A review of its antibacterial activity, pharmaco*kinetic properties and therapeutic use. Drugs. (1988) 35:373–447. 10.2165/00003495-198835040-00003 [PubMed] [CrossRef] [Google Scholar]

6. Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem. (2018) 146:599–612. 10.1016/j.ejmech.2018.01.078 [PubMed] [CrossRef] [Google Scholar]

7. National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 2764 CRF. (2022). Available online at: https://pubchem.ncbi.nlm.nih.gov/compound/2022

8. LeBel M. Ciprofloxacin: chemistry, mechanism of action, resistance, antimicrobial spectrum, pharmaco*kinetics, clinical trials, and adverse reactions. Pharmacotherapy. (1988) 8:3–33. 10.1002/j.1875-9114.1988.tb04058.x [PubMed] [CrossRef] [Google Scholar]

9. Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules. (2020) 25:5662. 10.3390/molecules25235662 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Serizawa M, Sekizuka T, Okutani A, Banno S, Sata T, Inoue S, et al.. Genomewide screening for novel genetic variations associated with ciprofloxacin resistance in Bacillus anthracis. Antimicrob Agents Chemother. (2010) 54:2787–92. 10.1128/AAC.01405-09 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Knoll KE, Lindeque Z, Adeniji AA, Oosthuizen CB, Lall N, Loots DT. Elucidating the antimycobacterial mechanism of action of ciprofloxacin using metabolomics. Microorganisms. (2021) 9:1158. 10.20944/preprints202104.0443.v1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Liu C, Shi J, Dai Q, Yin X, Zhang X, Zheng A. In-vitro and in-vivo evaluation of ciprofloxacin liposomes for pulmonary administration. Drug Dev Ind Pharm. (2015) 41:272–8. 10.3109/03639045.2013.858740 [PubMed] [CrossRef] [Google Scholar]

13. Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol. (2019) 68:1–10. 10.1099/jmm.0.000873 [PubMed] [CrossRef] [Google Scholar]

14. Chin NX, Neu HC. Ciprofloxacin, a quinolone carboxylic acid compound active against aerobic and anaerobic bacteria. Antimicrob Agents Chemother. (1984) 25:319–26. 10.1128/AAC.25.3.319 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Zeiler HJ, Grohe K. The in vitro and in vivo activity of ciprofloxacin. Eur J Clin Microbiol. (1984) 3:339–43. 10.1007/BF01977490 [PubMed] [CrossRef] [Google Scholar]

16. Eliopoulos GM, Gardella A, Moellering RC Jr. In vitro activity of ciprofloxacin, a new carboxyquinoline antimicrobial agent. Antimicrob Agents Chemother. (1984) 25:331–5. 10.1128/AAC.25.3.331 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Rodriguez JC, Ruiz M, Climent A, Royo G. In vitro activity of four fluoroquinolones against Mycobacterium tuberculosis. Int J Antimicrob Agents. (2001) 17:229–31. 10.1016/S0924-8579(00)00337-X [PubMed] [CrossRef] [Google Scholar]

18. Manzulli V, Fasanella A, Parisi A, Serrecchia L, Donatiello A, Rondinone V, et al.. Evaluation of in vitro antimicrobial susceptibility of Bacillus anthracis strains isolated during anthrax outbreaks in Italy from 1984 to 2017. J Vet Sci. (2019) 20:58–62. 10.4142/jvs.2019.20.1.58 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Reeves DS, Bywater MJ, Holt HA, White LO. In-vitro studies with ciprofloxacin, a new 4-quinolone compound. J Antimicrob Chemother. (1984) 13:333–46. 10.1093/jac/13.4.333 [PubMed] [CrossRef] [Google Scholar]

20. Shrire L, Saunders J, Traynor R, Koornhof HJ. A laboratory assessment of ciprofloxacin and comparable antimicrobial agents. Eur J Clin Microbiol. (1984) 3:328–32. 10.1007/BF01977488 [PubMed] [CrossRef] [Google Scholar]

21. El-Wafa WMA, Ibrahim YM. In vitro activity of fosfomycin in double and triple combinations with imipenem, ciprofloxacin and tobramycin against multidrug-resistant Escherichia coli. Curr Microbiol. (2020) 77:755–61. 10.1007/s00284-019-01871-w [PubMed] [CrossRef] [Google Scholar]

22. Sugathan S, Mandal J. An in vitro experimental study of the effect of fosfomycin in combination with amikacin, ciprofloxacin or meropenem on biofilm formation by multidrug-resistant urinary isolates of Escherichia coli. J Med Microbiol. (2019) 68:1699–706. 10.1099/jmm.0.001061 [PubMed] [CrossRef] [Google Scholar]

23. Drago L, De Vecchi E, Mombelli B, Nicola L, Valli M, Gismondo MR. Activity of levofloxacin and ciprofloxacin against urinary pathogens. J Antimicrob Chemother. (2001) 48:37–45. 10.1093/jac/48.1.37 [PubMed] [CrossRef] [Google Scholar]

24. Kwiecinska-Pirog J, Skowron K, Bartczak W, Gospodarek-Komkowska E. The ciprofloxacin impact on biofilm formation by Proteus mirabilis and P. vulgaris strains. Jundishapur J Microbiol. (2016) 9:e32656. 10.5812/jjm.32656 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Hoogkamp-Korstanje JA. In-vitro activities of ciprofloxacin, levofloxacin, lomefloxacin, ofloxacin, pefloxacin, sparfloxacin and trovafloxacin against gram-positive and gram-negative pathogens from respiratory tract infections. J Antimicrob Chemother. (1997) 40:427–31. 10.1093/jac/40.3.427 [PubMed] [CrossRef] [Google Scholar]

26. Group tCAS. Determination of the antimicrobial susceptibilities of Canadian isolates of Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis. J Antimicrob Chemother. (1999) 43(suppl_1):25–30. 10.1093/jac/43.suppl_1.25 [PubMed] [CrossRef] [Google Scholar]

27. Hoogkamp-Korstanje JA, Dirks-Go SI, Kabel P, Manson WL, Stobberingh EE, Vreede RW, et al.. Multicentre in-vitro evaluation of the susceptibility of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis to ciprofloxacin, clarithromycin, co-amoxiclav and sparfloxacin. J Antimicrob Chemother. (1997) 39:411–4. 10.1093/jac/39.3.411 [PubMed] [CrossRef] [Google Scholar]

28. Flamm RK, Rhomberg PR, Huband MD, Farrell DJ. In vitro activity of delafloxacin tested against isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrob Agents Chemother. (2016) 60:6381–5. 10.1128/AAC.00941-16 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Saito A, Koga H, Shigeno H, Watanabe K, Mori K, Kohno S, et al.. The antimicrobial activity of ciprofloxacin against Legionella species and the treatment of experimental Legionella pneumonia in guinea pigs. J Antimicrob Chemother. (1986) 18:251–60. 10.1093/jac/18.2.251 [PubMed] [CrossRef] [Google Scholar]

30. Dubois J, St-Pierre C. In vitro activity of gatifloxacin, compared with ciprofloxacin, clarithromycin, erythromycin, and rifampin, against Legionella species. Diagn Microbiol Infect Dis. (1999) 33:261–5. 10.1016/S0732-8893(98)00150-3 [PubMed] [CrossRef] [Google Scholar]

31. Stout JE, Arnold B, Yu VL. Comparative activity of ciprofloxacin, ofloxacin, levofloxacin, and erythromycin against Legionella species by broth microdilution and intracellular susceptibility testing in HL-60 cells. Diagn Microbiol Infect Dis. (1998) 30:37–43. 10.1016/S0732-8893(97)00174-0 [PubMed] [CrossRef] [Google Scholar]

32. Blondeau JM, Yaschuk Y. In vitro activities of ciprofloxacin, cefotaxime, ceftriaxone, chloramphenicol, and rifampin against fully susceptible and moderately penicillin-resistant Neisseria meningitidis. Antimicrob Agents Chemother. (1995) 39:2577–9. 10.1128/AAC.39.11.2577 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Slaney L, Chubb H, Ronald A, Brunham R. In-vitro activity of azithromycin, erythromycin, ciprofloxacin and norfloxacin against Neisseria gonorrhoeae, Haemophilus ducreyi, and Chlamydia trachomatis. J Antimicrob Chemother. (1990) 25(Suppl A):1–5. 10.1093/jac/25.suppl_A.1 [PubMed] [CrossRef] [Google Scholar]

34. Allen GP, Deao KM, Hill SA, Schipelliti SM, Tran T. In vitro evaluation of antimicrobial resistance selection in Neisseria gonorrhoeae. Int J Antimicrob Agents. (2021) 58:106417. 10.1016/j.ijantimicag.2021.106417 [PubMed] [CrossRef] [Google Scholar]

35. Isenberg HD, Alperstein P, France K. In vitro activity of ciprofloxacin, levofloxacin, and trovafloxacin, alone and in combination with beta-lactams, against clinical isolates of Pseudomonas aeruginosa, Stenotrophom*onas maltophilia, and Burkholderia cepacia. Diagn Microbiol Infect Dis. (1999) 33:81–6. 10.1016/S0732-8893(98)00126-6 [PubMed] [CrossRef] [Google Scholar]

36. Klinger JD, Aronoff SC. In-vitro activity of ciprofloxacin and other antibacterial agents against Pseudomonas aeruginosa and Pseudomonas cepacia from cystic fibrosis patients. J Antimicrob Chemother. (1985) 15:679–84. 10.1093/jac/15.6.679 [PubMed] [CrossRef] [Google Scholar]

37. Chalkley LJ, Koornhof HJ. Antimicrobial activity of ciprofloxacin against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus determined by the killing curve method: antibiotic comparisons and synergistic interactions. Antimicrob Agents Chemother. (1985) 28:331–42. 10.1128/AAC.28.2.331 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Heinemann B, Wisplinghoff H, Edmond M, Seifert H. Comparative activities of ciprofloxacin, clinafloxacin, gatifloxacin, gemifloxacin, levofloxacin, moxifloxacin, and trovafloxacin against epidemiologically defined Acinetobacter baumannii strains. Antimicrob Agents Chemother. (2000) 44:2211–3. 10.1128/AAC.44.8.2211-2213.2000 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Kennedy N, Fox R, Kisyombe GM, Saruni AO, Uiso LO, Ramsay AR, et al.. Early bactericidal and sterilizing activities of ciprofloxacin in pulmonary tuberculosis. Am Rev Respir Dis. (1993) 148:1547–51. 10.1164/ajrccm/148.6_Pt_1.1547 [PubMed] [CrossRef] [Google Scholar]

40. Hoffner SE, Gezelius L, Olsson-Liljequist B. In-vitro activity of fluorinated quinolones and macrolides against drug-resistant Mycobacterium tuberculosis. J Antimicrob Chemother. (1997) 40:885–8. 10.1093/jac/40.6.885 [PubMed] [CrossRef] [Google Scholar]

41. World Health Organization . WHO Consolidated Guidelines on Drug-resistant Tuberculosis Treatment. Geneva: World Health Organization; (2019). [PubMed] [Google Scholar]

42. Chen TC, Lu PL, Lin CY, Lin WR, Chen YH. Fluoroquinolones are associated with delayed treatment and resistance in tuberculosis: a systematic review and meta-analysis. Int J Infect Dis. (2011) 15:e211–6. 10.1016/j.ijid.2010.11.008 [PubMed] [CrossRef] [Google Scholar]

43. Chesson HW, Kirkcaldy RD, Gift TL, Owusu-Edusei K Jr, Weinstock HS. Ciprofloxacin resistance 1116 and gonorrhea incidence rates in 17 cities, United States, 1991-2006. Emerg Infect Dis. (2014) 20:612–9. 10.3201/eid2004.131288 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Andrade AA, de Pilla Varotti F, de Freitas IO, de Souza MV, Vasconcelos TR, Boechat N, et al.. Enhanced activity of mefloquine and artesunic acid against Plasmodium falciparum in vitro and P. berghei in mice by combination with ciprofloxacin. Eur J Pharmacol. (2007) 558:194–8. 10.1016/j.ejphar.2006.11.061 [PubMed] [CrossRef] [Google Scholar]

45. Afriyie DK, Adu LB, Dzradosi M, Amponsah SK, Ohene-Manu P, Manu-Ofei F. Comparative in vitro activity of ciprofloxacin and levofloxacin against isolated uropathogens in Ghana: a pilot study. Pan Afr Med J. (2018) 30:194. 10.11604/pamj.2018.30.194.15457 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Fasugba O, Gardner A, Mitchell BG, Mnatzaganian G. Ciprofloxacin resistance in community- and hospital-acquired Escherichia coli urinary tract infections: a systematic review and meta-analysis of observational studies. BMC Infect Dis. (2015) 15:545. 10.1186/s12879-015-1282-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, et al.. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. (2011) 52:e103–20. 10.1093/cid/ciq257 [PubMed] [CrossRef] [Google Scholar]

48. Kang CI, Kim J, Park DW, Kim BN, Ha US, Lee SJ, et al.. Clinical practice guidelines for the antibiotic treatment of community-acquired urinary tract infections. Infect Chemother. (2018) 50:67–100. 10.3947/ic.2018.50.1.67 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Blaettler L, Mertz D, Frei R, Elzi L, Widmer AF, Battegay M, et al.. Secular trend and risk factors for antimicrobial resistance in Escherichia coli isolates in Switzerland 1997-2007. Infection. (2009) 37:534–9. 10.1007/s15010-009-8457-0 [PubMed] [CrossRef] [Google Scholar]

50. Hickerson AD, Carson CC. The treatment of urinary tract infections and use of ciprofloxacin extended release. Expert Opin Investig Drugs. (2006) 15:519–32. 10.1517/13543784.15.5.519 [PubMed] [CrossRef] [Google Scholar]

51. Stass H, Nagelschmitz J, Willmann S, Delesen H, Gupta A, Baumann S. Inhalation of a dry powder ciprofloxacin formulation in healthy subjects: a phase I study. Clin Drug Investig. (2013) 33:419–27. 10.1007/s40261-013-0082-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Mogayzel PJ Jr, Naureckas ET, Robinson KA, Brady C, Guill M, Lahiri T, et al.. Cystic Fibrosis Foundation pulmonary guideline pharmacologic approaches to prevention and eradication of initial Pseudomonas aeruginosa infection. Ann Am Thorac Soc. (2014) 11:1640–50. 10.1513/AnnalsATS.201404-166OC [PubMed] [CrossRef] [Google Scholar]

53. McShane PJ, Weers JG, Tarara TE, Haynes A, Durbha P, Miller DP, et al.. Ciprofloxacin dry powder for inhalation (ciprofloxacin DPI): technical design and features of an efficient drug-device combination. Pulm Pharmacol Ther. (2018) 50:72–9. 10.1016/j.pupt.2018.03.005 [PubMed] [CrossRef] [Google Scholar]

54. Dore MP, Tadeu V, Are B, Mura I, Fanciulli G, Massarelli G, et al.. Efficacy of a “rescue” ciprofloxacin-based regimen for eradication of Helicobacter pylori infection after treatment failures. Gastroenterol Res Pract. (2012) 2012:484591. 10.1155/2012/484591 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Chen K, Chan EWC, Chen S. Evolution and transmission of a conjugative plasmid encoding both ciprofloxacin and ceftriaxone resistance in Salmonella. Emerg Microbes Infect. (2019) 8:396–403. 10.1080/22221751.2019.1585965 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Fong IW, Ledbetter WH, Vandenbroucke AC, Simbul M, Rahm V. Ciprofloxacin concentrations in bone and muscle after oral dosing. Antimicrob Agents Chemother. (1986) 29:405–8. 10.1128/AAC.29.3.405 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Kish TD, Chang MH, Fung HB. Treatment of skin and soft tissue infections in the elderly: a review. Am J Geriatr Pharmacother. (2010) 8:485–513. 10.1016/S1543-5946(10)80002-9 [PubMed] [CrossRef] [Google Scholar]

58. Rosenfeld RM, Brown L, Cannon CR, Dolor RJ, Ganiats TG, Hannley M, et al.. Clinical practice guideline: acute otitis externa. Otolaryngol Head Neck Surg. (2006) 134:S4–23. 10.1016/j.otohns.2006.02.014 [PubMed] [CrossRef] [Google Scholar]

59. Noonan KY, Kim SY, Wong LY, Martin IW, Schwartzman JD, Saunders JE. Treatment of ciprofloxacin-resistant ear infections. Otol Neurotol. (2018) 39:e837–42. 10.1097/MAO.0000000000001966 [PubMed] [CrossRef] [Google Scholar]

60. Mofatteh MR, Shahabian Moghaddam F, Yousefi M, Namaei MH. A study of bacterial pathogens and antibiotic susceptibility patterns in chronic suppurative otitis media. J Laryngol Otol. (2018) 132:41–5. 10.1017/S0022215117002249 [PubMed] [CrossRef] [Google Scholar]

61. Herbert DA. Successful oral ciprofloxacin therapy of Neisseria elongata endocarditis. Ann Pharmacother. (2014) 48:1529–30. 10.1177/1060028014545355 [PubMed] [CrossRef] [Google Scholar]

62. Avery LM, Felberbaum CB, Hasan M. Ciprofloxacin for the treatment of Cardiobacterium hominis prosthetic valve endocarditis. IDCases. (2018) 11:77–9. 10.1016/j.idcr.2018.01.016 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Heldman AW, Hartert TV, Ray SC, Daoud EG, Kowalski TE, Pompili VJ, et al.. Oral antibiotic treatment of right-sided staphylococcal endocarditis in injection drug users: prospective randomized comparison with parenteral therapy. Am J Med. (1996) 101:68–76. 10.1016/S0002-9343(96)00070-8 [PubMed] [CrossRef] [Google Scholar]

64. Yasir M, Dutta D, Willcox MDP. Activity of antimicrobial peptides and ciprofloxacin against Pseudomonas aeruginosa biofilms. Molecules. (2020) 25:3834. 10.3390/molecules25173843 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. (2016) 14:563–75. 10.1038/nrmicro.2016.94 [PubMed] [CrossRef] [Google Scholar]

66. Verderosa AD, de la Fuente-Núñez C, Mansour SC, Cao J, Lu TK, Hanco*ck REW, et al.. Ciprofloxacin-nitroxide hybrids with potential for biofilm control. Eur J Med Chem. (2017) 138:590–601. 10.1016/j.ejmech.2017.06.058 [PubMed] [CrossRef] [Google Scholar]

67. Reffuveille F, Fuente-Núñez Cde L, Fairfull-Smith KE, Hanco*ck RE. Potentiation of ciprofloxacin action against Gram-negative bacterial biofilms by a nitroxide. Pathog Dis. (2015) 73:ftv016. 10.1093/femspd/ftv016 [PubMed] [CrossRef] [Google Scholar]

68. Verderosa AD, Mansour SC, de la Fuente-Núñez C, Hanco*ck RE, Fairfull-Smith KE. Synthesis and evaluation of ciprofloxacin-nitroxide conjugates as anti-biofilm agents. Molecules. (2016) 21:841. 10.3390/molecules21070841 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Li B, Webster TJ. Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J Orthop Res. (2018) 36:22–32. 10.1002/jor.23656 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al.. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. (2018) 11:1645–58. 10.2147/IDR.S173867 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Laponogov I, Veselkov DA, Crevel IM-T, Pan X-S, Fisher LM, Sanderson MR. Structure of an ‘open’clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport. Nucleic Acids Res. (2013) 41:9911–23. 10.1093/nar/gkt749 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. (2015) 1354:12–31. 10.1111/nyas.12830 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Fernández L, Hanco*ck RE. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. (2012) 25:661–81. 10.1128/CMR.00043-12 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Ruiz J, Pons MJ, Gomes C. Transferable mechanisms of quinolone resistance. Int J Antimicrob Agents. (2012) 40:196–203. 10.1016/j.ijantimicag.2012.02.011 [PubMed] [CrossRef] [Google Scholar]

75. Rodríguez-Martínez JM, Machuca J, Cano ME, Calvo J, Martínez-Martínez L, Pascual A. Plasmid-mediated quinolone resistance: two decades on. Drug Resist Updat. (2016) 29:13–29. 10.1016/j.drup.2016.09.001 [PubMed] [CrossRef] [Google Scholar]

76. Heidary M, Bahramian A, Hashemi A, Goudarzi M, Omrani VF, Eslami G, et al.. Detection of acrA, acrB, aac (6′)-Ib-cr, and qepA genes among clinical isolates of Escherichia coli and Klebsiella pneumoniae. Acta Microbiol Immunol Hung. (2017) 64:63–9. 10.1556/030.63.2016.011 [PubMed] [CrossRef] [Google Scholar]

77. Nakaminami H, Noguchi N, Sasatsu M. Fluoroquinolone efflux by the plasmid-mediated multidrug efflux pump QacB variant QacBIII in Staphylococcus aureus. Antimicrob Agents Chemother. (2010) 54:4107–11. 10.1128/AAC.01065-09 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Fonseca EL, Vicente ACP. Epidemiology of qnrVC alleles and emergence out of the Vibrionaceae family. J Med Microbiol. (2013) 62(Pt 10):1628–30. 10.1099/jmm.0.062661-0 [PubMed] [CrossRef] [Google Scholar]

79. Zhao J-Y, Dang H. Coastal seawater bacteria harbor a large reservoir of plasmid-mediated quinolone resistance determinants in Jiaozhou Bay, China. Microbial Ecol. (2012) 64:187–99. 10.1007/s00248-012-0008-z [PubMed] [CrossRef] [Google Scholar]

80. Domínguez-Herrera J, Velasco C, Docobo-Pérez F, Rodríguez-Martínez J, López-Rojas R, Briales A, et al.. Impact of qnrA1, qnrB1 and qnrS1 on the efficacy of ciprofloxacin and levofloxacin in an experimental pneumonia model caused by Escherichia coli with or without the GyrA mutation Ser83Leu. J Antimicrob Chemother. (2013) 68:1609–15. 10.1093/jac/dkt063 [PubMed] [CrossRef] [Google Scholar]

81. Michon A, Allou N, Chau F, Podglajen I, Fantin B, Cambau E. Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure. PLoS ONE. (2011) 6:e24552. 10.1371/journal.pone.0024552 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Conley ZC, Bodine TJ, Chou A, Zechiedrich L. Wicked: the untold story of ciprofloxacin. PLoS Pathog. (2018) 14:e1006805. 10.1371/journal.ppat.1006805 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Piekarska K, Wołkowicz T, Zacharczuk K, Rzeczkowska M, Chróst A, Bareja E, et al.. Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in a tertiary hospital in Warsaw, Poland. Int J Antimicrob Agents. (2015) 45:238–43. 10.1016/j.ijantimicag.2014.09.019 [PubMed] [CrossRef] [Google Scholar]

84. Kotb DN, Mahdy WK, Mahmoud MS, Khairy RMM. Impact of co-existence of PMQR genes and QRDR mutations on fluoroquinolones resistance in Enterobacteriaceae strains isolated from community and hospital acquired UTIs. BMC Infect Dis. (2019) 19:979. 10.1186/s12879-019-4606-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Belland RJ, Morrison SG, Ison C, Huang WM. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol Microbiol. (1994) 14:371–80. 10.1111/j.1365-2958.1994.tb01297.x [PubMed] [CrossRef] [Google Scholar]

86. Lindbäck E, Rahman M, Jalal S, Wretlind B. Mutations in gyrA, gyrB, parC, and parE in quinolone-resistant strains of Neisseria gonorrhoeae. Apmis. (2002) 110:651–7. 10.1034/j.1600-0463.2002.1100909.x [PubMed] [CrossRef] [Google Scholar]

87. Zhao L, Zhao S. Molecular basis of high-level ciprofloxacin resistance in Neisseria gonorrhoeae strains from Shandong Province, China. Braz J Microbiol. (2013) 44:273–6. 10.1590/S1517-83822013005000020 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Kulkarni S, Bala M, Sane S, Pandey S, Bhattacharya J, Risbud A. Mutations in the gyrA and parC genes of quinolone-resistant Neisseria gonorrhoeae isolates in India. Int J Antimicrob Agents. (2012) 40:549–53. 10.1016/j.ijantimicag.2012.08.007 [PubMed] [CrossRef] [Google Scholar]

89. Młynarczyk-Bonikowska B, Majewska A, Malejczyk M, Młynarczyk G, Majewski S. Multiresistant Neisseria gonorrhoeae: a new threat in second decade of the XXI century. Med Microbiol Immunol. (2020) 209:95–108. 10.1007/s00430-019-00651-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Shafer WM, Yu EW, Rouquette-Loughlin C, Golparian D, Jerse AE, Unemo M. Efflux pumps in Neisseria gonorrhoeae: contributions to antimicrobial resistance and virulence. In: Li X-Z, Elkins CA, Zgurskaya HI. editors. Efflux-mediated Antimicrobial Resistance in Bacteria. New York. NY: Springer; (2016), p. 439–69. 10.1007/978-3-319-39658-3_17 [CrossRef] [Google Scholar]

91. Gorla MC, Cassiolato AP, Pinhata JMW, de Moraes C, Corso A, Gagetti P, et al.. Emergence of resistance to ciprofloxacin in Neisseria meningitidis in Brazil. J Med Microbiol. (2018) 67:286–8. 10.1099/jmm.0.000685 [PubMed] [CrossRef] [Google Scholar]

92. Hong E, Thulin Hedberg S, Abad R, Fazio C, Enriquez R, Deghmane AE, et al.. Target gene sequencing to define the susceptibility of Neisseria meningitidis to ciprofloxacin. Antimicrob Agents Chemother. (2013) 57:1961–4. 10.1128/AAC.02184-12 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Chen M, Guo Q, Wang Y, Zou Y, Wang G, Zhang X, et al.. Shifts in the antibiotic susceptibility, serogroups, and clonal complexes of Neisseria meningitidis in Shanghai, China: a time trend analysis of the pre-quinolone and quinolone eras. PLoS Med. (2015) 12:e1001838. discussion e1001838. 10.1371/journal.pmed.1001838 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Zhu B, Fan Y, Xu Z, Xu L, Du P, Gao Y, et al.. Genetic diversity and clonal characteristics of ciprofloxacin-resistant meningococcal strains in China. J Med Microbiol. (2014) 63:1411–8. 10.1099/jmm.0.078600-0 [PubMed] [CrossRef] [Google Scholar]

95. Harcourt BH, Anderson RD, Wu HM, Cohn AC, MacNeil JR, Taylor TH, et al.. Population-based surveillance of Neisseria meningitidis antimicrobial resistance in the United States. Open Forum Infect Dis. (2015) 2:ofv117. 10.1093/ofid/ofv117 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Tsang RS, Law DK, Deng S, Hoang L. Ciprofloxacin-resistant Neisseria meningitidis in Canada: likely imported strains. Can J Microbiol. (2017) 63:265–8. 10.1139/cjm-2016-0716 [PubMed] [CrossRef] [Google Scholar]

97. Chen M, Zhang C, Zhang X, Chen M. Meningococcal quinolone resistance originated from several commensal Neisseria species. Antimicrob Agents Chemother. (2020) 64:e01494–01419. 10.1128/AAC.01494-19 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Castanheira M, Deshpande LM, Jones RN, Farrell DJ. Evaluation of quinolone resistance–determining region mutations and efflux pump expression in Neisseria meningitidis resistant to fluoroquinolones. Diagn Microbiol Infect Dis. (2012) 72:263–6. 10.1016/j.diagmicrobio.2011.12.001 [PubMed] [CrossRef] [Google Scholar]

99. Enríquez R, Abad R, Salcedo C, Pérez S, Vazquez JA. Fluoroquinolone resistance in Neisseria meningitidis in Spain. J Antimicrob Chemother. (2008) 61:286–90. 10.1093/jac/dkm452 [PubMed] [CrossRef] [Google Scholar]

100. Bruchmann S, Dotsch A, Nouri B, Chaberny IF, Haussler S. Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance. Antimicrob Agents Chemother. (2013) 57:1361–8. 10.1128/AAC.01581-12 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. (2014) 53:1565–74. 10.1021/bi5000564 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Wang Y-T, Lee M-F, Peng C-F. Mutations in the quinolone resistance-determining regions associated with ciprofloxacin resistance in Pseudomonas aeruginosa isolates from Southern Taiwan. Biomark Genom Med. (2014) 6:79–83. 10.1016/j.bgm.2014.03.003 [CrossRef] [Google Scholar]

103. Nouri R, Ahangarzadeh Rezaee M, Hasani A, Aghazadeh M, Asgharzadeh M. The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Braz J Microbiol. (2016) 47:925–30. 10.1016/j.bjm.2016.07.016 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Cho HH, Kwon KC, Kim S, Koo SH. Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant Pseudomonas aeruginosa. Ann Lab Med. (2014) 34:286–92. 10.3343/alm.2014.34.4.286 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Goli HR, Nahaei MR, Rezaee MA, Hasani A, Samadi Kafil H, Aghazadeh M, et al.. Contribution of mexAB-oprM and mexXY (-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran. Infect Genet Evol. (2016) 45:75–82. 10.1016/j.meegid.2016.08.022 [PubMed] [CrossRef] [Google Scholar]

106. Llanes C, Köhler T, Patry I, Dehecq B, Van Delden C, Plésiat P. Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother. (2011) 55:5676–84. 10.1128/AAC.00101-11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Morita Y, Tomida J, Kawamura Y. Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon. Front Microbiol. (2015) 6:8. 10.3389/fmicb.2015.00008 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Tai AS, Bell SC, Kidd TJ, Trembizki E, Buckley C, Ramsay KA, et al.. Genotypic diversity within a single Pseudomonas aeruginosa strain commonly shared by Australian patients with cystic fibrosis. PLoS ONE. (2015) 10:e0144022. 10.1371/journal.pone.0144022 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun. (2014) 453:254–67. 10.1016/j.bbrc.2014.05.090 [PubMed] [CrossRef] [Google Scholar]

110. Jørgensen KM, Wassermann T, Jensen PØ, Hengzuang W, Molin S, Høiby N, et al.. Sublethal ciprofloxacin treatment leads to rapid development of high-level ciprofloxacin resistance during long-term experimental evolution of Pseudomonas aeruginosa. Antimicrob Agents Chemother. (2013) 57:4215–21. 10.1128/AAC.00493-13 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Wong A, Kassen R. Parallel evolution and local differentiation in quinolone resistance in Pseudomonas aeruginosa. Microbiology. (2011) 157:937–44. 10.1099/mic.0.046870-0 [PubMed] [CrossRef] [Google Scholar]

112. Feng Y, Jonker MJ, Moustakas I, Brul S, Ter Kuile BH. Dynamics of mutations during development of resistance by Pseudomonas aeruginosa against five antibiotics. Antimicrob Agents Chemother. (2016) 60:4229–36. 10.1128/AAC.00434-16 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Sproston EL, Wimalarathna HM, Sheppard SK. Trends in fluoroquinolone resistance in Campylobacter. Microb Genom. (2018) 4:e000198. 10.1099/mgen.0.000198 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Yang W, Zhang M, Zhou J, Pang L, Wang G, Hou F. The molecular mechanisms of ciprofloxacin resistance in clinical Campylobacter jejuni and their genotyping characteristics in Beijing, China. Foodborne Pathog Dis. (2017) 14:386–92. 10.1089/fpd.2016.2223 [PubMed] [CrossRef] [Google Scholar]

115. Tang Y, Sahin O, Pavlovic N, LeJeune J, Carlson J, Wu Z, et al.. Rising fluoroquinolone resistance in Campylobacter isolated from feedlot cattle in the United States. Sci Rep. (2017) 7:1–8. 10.1038/s41598-017-00584-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM, Zhang Q. Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol. (2009) 4:189–200. 10.2217/17460913.4.2.189 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Wieczorek K, Osek J. Antimicrobial resistance mechanisms among Campylobacter. BioMed Res Int. (2013) 2013:340605. 10.1155/2013/340605 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Yao H, Shen Z, Wang Y, Deng F, Liu D, Naren G, et al.. Emergence of a potent multidrug efflux pump variant that enhances Campylobacter resistance to multiple antibiotics. MBio. (2016) 7:e01543-16. 10.1128/mBio.01543-16 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Shoji H, Shirakura T, f*ckuchi K, Takuma T, Hanaki H, Tanaka K, et al.. molecular analysis of quinolone-resistant Haemophilus influenzae: validation of the mutations in quinolone resistance-determining regions. J Infect Chemother. (2014) 20:250–5. 10.1016/j.jiac.2013.12.007 [PubMed] [CrossRef] [Google Scholar]

120. Puig C, Tirado-Vélez JM, Calatayud L, Tubau F, Garmendia J, Ardanuy C, et al.. Molecular characterization of fluoroquinolone resistance in nontypeable Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother. (2015) 59:461–6. 10.1128/AAC.04005-14 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Khoshnood S, Heidary M, Hashemi A, Shahi F, Saki M, Kouhsari E, et al.. Involvement of the AcrAB efflux pump in ciprofloxacin resistance in clinical Klebsiella pneumoniae isolates. Infect Disord Drug Targets. (2021) 21:564–71. 10.2174/1871526520999200905121220 [PubMed] [CrossRef] [Google Scholar]

122. Heidary M, Goudarzi H, Hashemi A, Eslami G, Goudarzi M, Chirani AS, Amraei S. Prevalence of quinolone resistance genes in Klebsiella pneumoniae strains isolated from hospitalized patients during 2013-2014. Arch Pediatr Infect Dis. (2017) 5:e38343. 10.5812/pedinfect.38343 [CrossRef] [Google Scholar]

123. Bansal S, Tandon V. Contribution of mutations in DNA gyrase and topoisomerase IV genes to ciprofloxacin resistance in Escherichia coli clinical isolates. Int J Antimicrob Agents. (2011) 37:253–5. 10.1016/j.ijantimicag.2010.11.022 [PubMed] [CrossRef] [Google Scholar]

124. Azargun R, Sadeghi V, Leylabadlo HE, Alizadeh N, Ghotaslou R. Molecular mechanisms of fluoroquinolone resistance in Enterobacteriaceae clinical isolates in Azerbaijan, Iran. Gene Rep. (2020) 21:100924. 10.1016/j.genrep.2020.100924 [CrossRef] [Google Scholar]

125. Chang MX, Zhang JF, Sun YH Li RS, Lin XL, Yang L, Webber MA, et al.. Contribution of different mechanisms to ciprofloxacin resistance in Salmonella spp. Front Microbiol. (2021) 12:663731. 10.3389/fmicb.2021.663731 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Malekzadegan Y, Rastegar E, Moradi M, Heidari H, Ebrahim-Saraie HS. Prevalence of quinolone-resistant uropathogenic Escherichia coli in a tertiary care hospital in south Iran. Infect Drug Resist. (2019) 12:1683. 10.2147/IDR.S206966 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Almahmoud I, Kay E, Schneider D, Maurin M. Mutational paths towards increased fluoroquinolone resistance in Legionella pneumophila. J Antimicrob Chemother. (2009) 64:284–93. 10.1093/jac/dkp173 [PubMed] [CrossRef] [Google Scholar]

128. Bruin JP, Koshkolda T, IJzerman EP, Luck C, Diederen BM, Den Boer JW, et al.. Isolation of ciprofloxacin-resistant Legionella pneumophila in a patient with severe pneumonia. J Antimicrob Chemother. (2014) 69:2869–71. 10.1093/jac/dku196 [PubMed] [CrossRef] [Google Scholar]

129. Shadoud L, Almahmoud I, Jarraud S, Etienne J, Larrat S, Schwebel C, et al.. Hidden selection of bacterial resistance to fluoroquinolones in vivo: the case of Legionella pneumophila and humans. EBioMedicine. (2015) 2:1179–85. 10.1016/j.ebiom.2015.07.018 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Yamada K, Saito R. Molecular analysis of low-level fluoroquinolone resistance in clinical isolates of Moraxella catarrhalis. J Med Microbiol. (2014) 63:1066–70. 10.1099/jmm.0.073734-0 [PubMed] [CrossRef] [Google Scholar]

131. Yamada K, Saito R, Muto S, Kashiwa M, Tamamori Y, Fujisaki S. Molecular characterization of fluoroquinolone-resistant Moraxella catarrhalis variants generated in vitro by stepwise selection. Antimicrob Agents Chemother. (2017) 61:e01336-17. 10.1128/AAC.01336-17 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Gergova R, Markovska R. Antimicrobial resistance of Bulgarian isolates Moraxella catarrhalis during the period 1999-2018. J IMAB Annu Proc Sci Papers. (2020) 26:3208–12. 10.5272/jimab.2020262.3208 [CrossRef] [Google Scholar]

133. Lari AR, Ardebili A, Hashemi A. AdeR-AdeS mutations & overexpression of the AdeABC efflux system in ciprofloxacin-resistant Acinetobacter baumannii clinical isolates. Indian J Med Res. (2018) 147:413–21. 10.4103/ijmr.IJMR_644_16 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Gurney J, Pradier L, Griffin JS, Gougat-Barbera C, Chan BK, Turner PE, et al.. Phage steering of antibiotic-resistance evolution in the bacterial pathogen, Pseudomonas aeruginosa. Evol Med Public Health. (2020) 2020:148–57. 10.1093/emph/eoaa026 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Lopes B, Amyes S. Insertion sequence disruption of adeR and ciprofloxacin resistance caused by efflux pumps and gyrA and parC mutations in Acinetobacter baumannii. Int J Antimicrob Agents. (2013) 41:117–21. 10.1016/j.ijantimicag.2012.08.012 [PubMed] [CrossRef] [Google Scholar]

136. Ardebili A, Lari AR, Beheshti M, Lari ER. Association between mutations in gyrA and parC genes of Acinetobacter baumannii clinical isolates and ciprofloxacin resistance. Iran J Basic Med Sci. (2015) 18:623–6. [PMC free article] [PubMed] [Google Scholar]

137. Maleki M-H, Jalilian FA, Khayat H, Mohammadi M, Pourahmad F, Asadollahi K, et al.. Detection of highly ciprofloxacin resistance Acinetobacter baumannii isolated from patients with burn wound infections in presence and absence of efflux pump inhibitor. Maedica. (2014) 9:162–7. [PMC free article] [PubMed] [Google Scholar]

138. Khayat H, Sadeghifard N, Pakzad I, Azimi L, Delfani S, Sayehmiri K, et al.. Determination of different fluoroquinolone mechanisms among clinical isolates of Acinetobacter baumannii in Tehran, Iran. Iran Red Crescent Med J. (2017) 19. 10.5812/ircmj.58798 [CrossRef] [Google Scholar]

139. López M, Tenorio C, Del Campo R, Zarazaga M, Torres C. Characterization of the mechanisms of fluoroquinolone resistance in vancomycin-resistant enterococci of different origins. J Chemother. (2011) 23:87–91. 10.1179/joc.2011.23.2.87 [PubMed] [CrossRef] [Google Scholar]

140. Mlynarczyk B, Mlynarczyk A, Kmera-Muszynska M, Majewski S, Mlynarczyk G. Mechanisms of resistance to antimicrobial drugs in pathogenic Gram-positive cocci. Mini Rev Med Chem. (2010) 10:928–37. 10.2174/138955710792007204 [PubMed] [CrossRef] [Google Scholar]

141. Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. (2014) 12:1221–36. 10.1586/14787210.2014.956092 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Arsène S, Leclercq R. Role of a qnr-like gene in the intrinsic resistance of Enterococcus faecalis to fluoroquinolones. Antimicrob Agents Chemother. (2007) 51:3254–8. 10.1128/AAC.00274-07 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Goudarzi M, Eslami G, Rezaee R, Heidary M, Khoshnood S, Sajadi Nia R. Clonal dissemination of Staphylococcus aureus isolates causing nosocomial infections, Tehran, Iran. Iran J Basic Med Sci. (2019) 22:238–45. 10.22038/ijbms.2018.30067.7245 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Khoshnood S, Shahi F, Jomehzadeh N, Montazeri EA, Saki M, Mortazavi SM, et al.. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among methicillin-resistant Staphylococcus aureus strains isolated from burn patients. Acta Microbiol Immunol Hung. (2019) 66:387–98. 10.1556/030.66.2019.015 [PubMed] [CrossRef] [Google Scholar]

145. Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. (2014) 12:465–78. 10.1038/nrmicro3270 [PubMed] [CrossRef] [Google Scholar]

146. Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev. (2017) 41:430–49. 10.1093/femsre/f*ck007 [PubMed] [CrossRef] [Google Scholar]

147. Papkou A, Hedge J, Kapel N, Young B, MacLean RC. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates. Nat Commun. (2020) 11:1–15. 10.1038/s41467-020-17735-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Hassanzadeh S, Mashhadi R, Yousefi M, Askari E, Saniei M, Pourmand MR. Frequency of efflux pump genes mediating ciprofloxacin and antiseptic resistance in methicillin-resistant Staphylococcus aureus isolates. Microb Pathog. (2017) 111:71–4. 10.1016/j.micpath.2017.08.026 [PubMed] [CrossRef] [Google Scholar]

149. Khoshnood S, Goudarzi M, Taki E, Darbandi A, Kouhsari E, Heidary M, et al.. Bedaquiline: current status and future perspectives. J Glob Antimicrob Resist. (2021) 25:48–59. 10.1016/j.jgar.2021.02.017 [PubMed] [CrossRef] [Google Scholar]

150. Heidary M, Shirani M, Moradi M, Goudarzi M, Pouriran R, Rezaeian T, et al.. Tuberculosis challenges: resistance, co-infection, diagnosis, and treatment. Eur J Microbiol Immunol. (2022) 12:1–17. 10.1556/1886.2021.00021 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Cambau E, Viveiros M, Machado D, Raskine L, Ritter C, Tortoli E, et al.. Revisiting susceptibility testing in MDR-TB by a standardized quantitative phenotypic assessment in a European multicentre study. J Antimicrob Chemother. (2015) 70:686–96. 10.1093/jac/dku438 [PubMed] [CrossRef] [Google Scholar]

152. Avalos E, Catanzaro D, Catanzaro A, Ganiats T, Brodine S, Alcaraz J, et al.. Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: a systematic review. PLoS ONE. (2015) 10:e0120470. 10.1371/journal.pone.0120470 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Kabir S, Tahir Z, Mukhtar N, Sohail M, Saqalein M, Rehman A. Fluoroquinolone resistance and mutational profile of gyrA in pulmonary MDR tuberculosis patients. BMC Pulm Med. (2020) 20:138. 10.1186/s12890-020-1172-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Rodrigues L, Villellas C, Bailo R, Viveiros M, Aínsa JA. Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. (2013) 57:751–7. 10.1128/AAC.01482-12 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

155. Maruri F, Sterling TR, Kaiga AW, Blackman A, van der Heijden YF, Mayer C, et al.. systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother. (2012) 67:819–31. 10.1093/jac/dkr566 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Lau RW, Ho P-L, Kao RY, Yew W-W, Lau TC, Cheng VC, et al.. Molecular characterization of fluoroquinolone resistance in Mycobacterium tuberculosis: functional analysis of gyrA mutation at position 74. Antimicrob Agents Chemother. (2011) 55:608–14. 10.1128/AAC.00920-10 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Zhang Z, Lu J, Wang Y, Pang Y, Zhao Y. Prevalence and molecular characterization of fluoroquinolone-resistant Mycobacterium tuberculosis isolates in China. Antimicrob Agents Chemother. (2014) 58:364–9. 10.1128/AAC.01228-13 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Long Q, Li W, Du Q, Fu Y, Liang Q, Huang H, et al.. gyrA/B fluoroquinolone resistance allele profiles amongst Mycobacterium tuberculosis isolates from mainland China. Int J Antimicrob Agents. (2012) 39:486–9. 10.1016/j.ijantimicag.2012.02.015 [PubMed] [CrossRef] [Google Scholar]

159. Takiff H, Guerrero E. Current prospects for the fluoroquinolones as first-line tuberculosis therapy. Antimicrob Agents Chemother. (2011) 55:5421–9. 10.1128/AAC.00695-11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. Lu J, Liu M, Wang Y, Pang Y, Zhao Z. Mechanisms of fluoroquinolone monoresistance in Mycobacterium tuberculosis. FEMS Microbiol Lett. (2014) 353:40–8. 10.1111/1574-6968.12401 [PubMed] [CrossRef] [Google Scholar]

161. Wang L, Di Luca M, Tkhilaishvili T, Trampuz A, Gonzalez Moreno M. Synergistic activity of fosfomycin, ciprofloxacin, and gentamicin against Escherichia coli and Pseudomonas aeruginosa biofilms. Front Microbiol. (2019) 10:2522. 10.3389/fmicb.2019.02522 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Ren H, Zhang J, Zhou J, Xu C, Fan Z, Pan X, et al.. Synergistic bactericidal activities of tobramycin with ciprofloxacin and azithromycin against Klebsiella pneumoniae. J Antibiot. (2021) 74:528–37. 10.1038/s41429-021-00427-0 [PubMed] [CrossRef] [Google Scholar]

163. Abbas MK, Kadhum DA, Shabeeb AK, Mohammed SA. Combination effect of ciprofloxacin and streptomycin with cefotaxime against multi-drug resistant Pseudomonas aeruginosa from different clinical samples. Res J Pharm Technol. (2020) 13:4403–8. 10.5958/0974-360X.2020.00779.9 [CrossRef] [Google Scholar]

164. Pankuch GA, Lin G, Seifert H, Appelbaum PC. Activity of meropenem with and without ciprofloxacin and colistin against Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob Agents Chemother. (2008) 52:333–6. 10.1128/AAC.00689-07 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. Rees VE, Yadav R, Rogers KE, Bulitta JB, Wirth V, Oliver A, et al.. Meropenem combined with ciprofloxacin combats hypermutable Pseudomonas aeruginosa from respiratory infections of cystic fibrosis patients. Antimicrob Agents Chemother. (2018) 62:e01150–01118. 10.1128/AAC.01150-18 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Srivastava P, Sivashanmugam K. Efficacy of sub-MIC level of meropenem and ciprofloxacin against extensive drug-resistant (XDR) Pseudomonas aeruginosa isolates of diabetic foot ulcer patients. Infect Genet Evol. (2021) 92:104824. 10.1016/j.meegid.2021.104824 [PubMed] [CrossRef] [Google Scholar]

167. Lu Y, Zhang Y, Zhou H, Yu F, Sun S, Rui Y. Combined drug sensitivity test of 50 strains of extensively drug-resistant Acinetobacter baumannii. J South Med Univ. (2014) 34:1697–701. [PubMed] [Google Scholar]

168. Sun Y, Wang L, Li J, Zhao C, Zhao J, Liu M, et al.. Synergistic efficacy of meropenem and rifampicin in a murine model of sepsis caused by multidrug-resistant Acinetobacter baumannii. Eur J Pharmacol. (2014) 729:116–22. 10.1016/j.ejphar.2014.02.015 [PubMed] [CrossRef] [Google Scholar]

169. Ramadan RA, Bedawy AM, Negm EM, Hassan TH, Ibrahim DA, ElSheikh SM, et al.. Carbapenem-resistant Klebsiella pneumoniae among patients with ventilator-associated pneumonia: evaluation of antibiotic combinations and susceptibility to new antibiotics. Infect Drug Resist. (2022) 15:3537. 10.2147/IDR.S371248 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Karki R, Lamichhane S, Basnet BB, Dahal A, Awal BK, Mishra SK. In vitro antimicrobial synergy testing of extensively drug-resistant clinical isolates at an organ transplant center in Nepal. Infect Drug Resist. (2021) 14:1669. 10.2147/IDR.S309531 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Ontong JC, Ozioma NF, Voravuthikunchai SP, Chusri S. Synergistic antibacterial effects of colistin in combination with aminoglycoside, carbapenems, cephalosporins, fluoroquinolones, tetracyclines, fosfomycin, and piperacillin on multidrug resistant Klebsiella pneumoniae isolates. PLoS ONE. (2021) 16:e0244673. 10.1371/journal.pone.0244673 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Stergiopoulou T, Meletiadis J, Sein T, Papaioannidou P, Tsiouris I, Roilides E, et al.. Comparative pharmacodynamic interaction analysis between ciprofloxacin, moxifloxacin and levofloxacin and antifungal agents against Candida albicans and Aspergillus fumigatus. J Antimicrob Chemother. (2009) 63:343–8. 10.1093/jac/dkn473 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Kim SE, Kim HK, Choi SM, Yu Y, Kim UJ, Darboe KS, et al.. In vitro synergy and in vivo activity of tigecycline-ciprofloxacin combination therapy against Vibrio vulnificus sepsis. Antimicrob Agents Chemother. (2019) 63:e00310–00319. 10.1128/AAC.00310-19 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Shahmoradi S, Shariati A, Zargar N, Yadegari Z, Asnaashari M, Amini SM, et al.. Antimicrobial effects of selenium nanoparticles in combination with photodynamic therapy against Enterococcus faecalis biofilm. Photodiagnosis Photodyn Ther. (2021) 35:102398. 10.1016/j.pdpdt.2021.102398 [PubMed] [CrossRef] [Google Scholar]

175. Khare T, Mahalunkar S, Shriram V, Gosavi S, Kumar V. Embelin-loaded chitosan gold nanoparticles interact synergistically with ciprofloxacin by inhibiting efflux pumps in multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. Environ Res. (2021) 199:111321. 10.1016/j.envres.2021.111321 [PubMed] [CrossRef] [Google Scholar]

176. Mala R, Arunachalam P, Sivasankari M. Synergistic bactericidal activity of silver nanoparticles and ciprofloxacin against phytopathogens. J Cell Tissue Res. (2012) 12:3249. [Google Scholar]

177. Nikparast Y, Saliani M. Synergistic effect between phyto-syntesized silver nanoparticles and ciprofloxacin antibiotic on some pathogenic bacterial strains. J Med Bacteriol. (2018) 7:36–43. [Google Scholar]

178. Nejabatdoust A, Salehzadeh A, Zamani H, Moradi-Shoeili Z. Synthesis, characterization and functionalization of ZnO nanoparticles by glutamic acid (Glu) and conjugation of ZnO@Glu by thiosemicarbazide and its synergistic activity with ciprofloxacin against multi-drug resistant Staphylococcus aureus. J Clust Sci. (2019) 30:329–36. 10.1007/s10876-018-01487-3 [CrossRef] [Google Scholar]

179. Yayehrad AT, Wondie GB, Marew T. Different nanotechnology approaches for ciprofloxacin delivery against multidrug-resistant microbes. Infect Drug Resist. (2022) 15:413–26. 10.2147/IDR.S348643 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Ibraheem DR, Hussein NN, Sulaiman GM, Mohammed HA, Khan RA, Al Rugaie O. Ciprofloxacin-loaded silver nanoparticles as potent nano-antibiotics against resistant pathogenic bacteria. Nanomaterials. (2022) 12:2808. 10.3390/nano12162808 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Anwar A, Imran M, Ramzan M, Khan FA, Ismail N, Hussain AI, et al.. Chitosan-based Dy2O3/CuFe3O4 bio-nanocomposite development, characterization, and drug release kinetics. Int J Biol Macromol. (2022) 220:788–801. 10.1016/j.ijbiomac.2022.08.119 [PubMed] [CrossRef] [Google Scholar]

182. Liu J, Ding H, Zhao M, Tu F, He T, Zhang L, et al.. Functionalized erythrocyte membrane-coated nanoparticles for the treatment of Klebsiella pneumoniae-induced sepsis. Front Microbiol. (2022) 13:901979. 10.3389/fmicb.2022.901979 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

183. Liu J, Song W, Algharib SA, Luo W, Chen W. Designing, structural determination, and antibacterial activity of injectable ciprofloxacin-loaded gelatin-sodium carboxymethyl cellulose composite nanogels against Staphylococcus aureus. Curr Drug Deliv. (2022). 10.2174/1567201819666220513121219 [PubMed] [CrossRef] [Google Scholar]

184. Mehdizadeh M, Sheikhpour M, Salahshourifar I, Siadat SD, Saffarian P. An in vitro study of molecular effects of a combination treatment with antibiotics and nanofluid containing carbon nano-tubes on Klebsiella pneumoniae. Iran J Public Health. (2021) 50:2292–301. 10.18502/ijph.v50i11.7585 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Massey S, Iqbal F, Rehman AU, Iqbal MS, Iram F. Preparation, characterization and biological evaluation of silver nanoparticles and drug loaded composites for wound dressings formed from Lallemantia royleana seeds' mucilage. J Biomater Sci Polym Ed. (2022) 33:481–98. 10.1080/09205063.2021.1992590 [PubMed] [CrossRef] [Google Scholar]

186. Zhu L, Chen L. Facile design and development of nano-clustery graphene-based macromolecular protein hydrogel loaded with ciprofloxacin to antibacterial improvement for the treatment of burn wound injury. Polym Bull. (2022) 79:7953–68. 10.1007/s00289-021-03875-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Mahkam M, Bazmi Zeynabad F, Alizadeh E, Rahimi M, Rahimi F, Salehi R. Novel methotrexate-ciprofloxacin loaded alginate-clay based nanocomposite as anticancer and antibacterial co-drug delivery system. Adv Pharm Bull. (2021) 11:477–89. 10.34172/apb.2021.055 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Arshad R, Tabish TA, Kiani MH, Ibrahim IM, Shahnaz G, Rahdar A, et al.. A hyaluronic acid functionalized self-nano-emulsifying drug delivery system (SNEDDS) for enhancement in ciprofloxacin targeted delivery against intracellular infection. Nanomaterials. (2021) 11:1086. 10.3390/nano11051086 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Raouf M, Essa S, El Achy S, Essawy M, Rafik S, Baddour M. Evaluation of combined ciprofloxacin and azithromycin free and nano formulations to control biofilm producing Pseudomonas aeruginosa isolated from burn wounds. Indian J Med Microbiol. (2021) 39:81–7. 10.1016/j.ijmmb.2021.01.004 [PubMed] [CrossRef] [Google Scholar]

190. Doymus B, Kerem G, Yazgan Karatas A, Kok FN, Onder S. A functional coating to enhance antibacterial and bioactivity properties of titanium implants and its performance in vitro. J Biomater Appl. (2021) 35:655–69. 10.1177/0885328220977765 [PubMed] [CrossRef] [Google Scholar]

191. Orsu P, Matta S. Fabrication and characterization of carboxymethyl guar gum nanocomposite for application of wound healing. Int J Biol Macromol. (2020) 164:2267–76. 10.1016/j.ijbiomac.2020.07.322 [PubMed] [CrossRef] [Google Scholar]

192. Benedini L, Laiuppa J, Santillan G, Baldini M, Messina P. Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: assessment of their bioactivity, biocompatibility, and antibacterial activity. Mater Sci Eng C Mater Biol Appl. (2020) 115:111101. 10.1016/j.msec.2020.111101 [PubMed] [CrossRef] [Google Scholar]

193. Gunday C, Anand S, Gencer HB, Munafo S, Moroni L, Fusco A, et al.. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv Transl Res. (2020) 10:706–20. 10.1007/s13346-020-00736-1 [PubMed] [CrossRef] [Google Scholar]

194. Sabzi M, Afshari MJ, Babaahmadi M, Shafa*gh N. pH-dependent swelling and antibiotic release from citric acid crosslinked poly(vinyl alcohol) (PVA)/nano silver hydrogels. Colloids Surf B Biointerfaces. (2020) 188:110757. 10.1016/j.colsurfb.2019.110757 [PubMed] [CrossRef] [Google Scholar]

195. Esfahanian M, Ghasemzadeh MA, Razavian SMH. Synthesis, identification and application of the novel metal-organic framework Fe3O4@PAA@ZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity. Artif Cells Nanomed Biotechnol. (2019) 47:2024–30. 10.1080/21691401.2019.1617729 [PubMed] [CrossRef] [Google Scholar]

196. Zhang Y, Chang M, Bao F, Xing M, Wang E, Xu Q, et al.. Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. Nanoscale. (2019) 11:6315–33. 10.1039/C8NR09818B [PubMed] [CrossRef] [Google Scholar]

197. Farag MM, Al-Rashidy ZM, Ahmed MM. In vitro drug release behavior of Ce-doped nano-bioactive glass carriers under oxidative stress. J Mater Sci Mater Med. (2019) 30:18. 10.1007/s10856-019-6220-3 [PubMed] [CrossRef] [Google Scholar]

198. Prusty K, Swain SK. Release of ciprofloxacin drugs by nano gold embedded cellulose grafted polyacrylamide hybrid nanocomposite hydrogels. Int J Biol Macromol. (2019) 126:765–75. 10.1016/j.ijbiomac.2018.12.258 [PubMed] [CrossRef] [Google Scholar]

199. Ahmad A, Khan A, Khan LA, Manzoor N. In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. J Med Microbiol. (2010) 59(Pt 10):1178–84. 10.1099/jmm.0.020693-0 [PubMed] [CrossRef] [Google Scholar]

200. Haroun MF, Al-Kayali RS. Synergistic effect of Thymbra spicata L. extracts with antibiotics against multidrug- resistant Staphylococcus aureus and Klebsiella pneumoniae strains. Iran J Basic Med Sci. (2016) 19:1193–200. [PMC free article] [PubMed] [Google Scholar]

201. Abdi Ali A, Shafiei M, Shahcheraghi F, Saboora A, Ghazanfari T. The study of synergistic effects of n. butanolic Cyclamen coum extract and ciprofloxacin on inhibition of Pseudomonas aeruginosa biofilm formation. Biol J Microorganism. (2015) 3:25–32. [Google Scholar]

202. Aqil F, Ahmad I, Owais M. Evaluation of anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and synergy of some bioactive plant extracts. Biotechnol J. (2006) 1:1093–102. 10.1002/biot.200600130 [PubMed] [CrossRef] [Google Scholar]

203. Choi JG, Choi JY, Mun SH, Kang OH, Bharaj P, Shin DW, et al.. Antimicrobial activity and synergism of Sami-Hyanglyun-Hwan with ciprofloxacin against methicillin-resistant Staphylococcus aureus. Asian Pac J Trop Med. (2015) 8:538–42. 10.1016/j.apjtm.2015.06.010 [PubMed] [CrossRef] [Google Scholar]

204. Lan J-E, Li X-J, Zhu X-F, Sun Z-L, He J-M, Zloh M, et al.. Flavonoids from Artemisia rupestris and their synergistic antibacterial effects on drug-resistant Staphylococcus aureus. Nat Prod Res. (2021) 35:1881–6. 10.1080/14786419.2019.1639182 [PubMed] [CrossRef] [Google Scholar]

205. Liu G, Liang J-C, Wang X-L, Li Z-H, Wang W, Guo N, et al.. In vitro synergy of biochanin A and ciprofloxacin against clinical isolates of Staphylococcus aureus. Molecules. (2011) 16:6656–66. 10.3390/molecules16086656 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Guzmán EL, Cruz FJM. Combinations of extracts of propolis and other compounds against methicillin-resistant Staphylococcus aureus. In: El-Shemy HA. editor. Active Ingredients from Aromatic and Medicinal Plants. London: IntechOpen; (2017). 10.5772/66219 [CrossRef] [Google Scholar]

207. Siddiqui SH, Awan KH, Javed F. Bactericidal efficacy of photodynamic therapy against Enterococcus faecalis in infected root canals: a systematic literature review. Photodiagnosis Photodyn Ther. (2013) 10:632–43. 10.1016/j.pdpdt.2013.07.006 [PubMed] [CrossRef] [Google Scholar]

208. Maisch T, Hackbarth S, Regensburger J, Felgenträger A, Bäumler W, Landthaler M, et al.. Photodynamic inactivation of multi-resistant bacteria (PIB)–a new approach to treat superficial infections in the 21st century. J Dtsch Dermatol Ges. (2011) 9:360–6. 10.1111/j.1610-0387.2010.07577.x [PubMed] [CrossRef] [Google Scholar]

209. Rosa LP, da Silva FC, Nader SA, Meira GA, Viana MS. Antimicrobial photodynamic inactivation of Staphylococcus aureus biofilms in bone specimens using methylene blue, toluidine blue ortho and malachite green: an in vitro study. Arch Oral Biol. (2015) 60:675–80. 10.1016/j.archoralbio.2015.02.010 [PubMed] [CrossRef] [Google Scholar]

210. Ronqui MR, de Aguiar TMSF, De Freitas LM, Miranda ET, Fontana CR. Synergistic antimicrobial effect of photodynamic therapy and ciprofloxacin. J Photochem Photobiol B Biol. (2016) 158:122–9. 10.1016/j.jphotobiol.2016.02.036 [PubMed] [CrossRef] [Google Scholar]

211. Pereira NL, Aquino PE, Júnior JG, Cristo JS, Vieira Filho MA, Moura FF, et al.. Antibacterial activity and antibiotic modulating potential of the essential oil obtained from Eugenia jambolana in association with led lights. J Photochem Photobiol B Biol. (2017) 174:144–9. 10.1016/j.jphotobiol.2017.07.027 [PubMed] [CrossRef] [Google Scholar]

212. Moghadam MT, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A, et al.. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist. (2020) 13:45. 10.2147/IDR.S234353 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

213. Gu J, Liu X, Li Y, Han W, Lei L, Yang Y, et al.. A method for generation phage co*cktail with great therapeutic potential. PLoS ONE. (2012) 7:e31698. 10.1371/journal.pone.0031698 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

214. Jaiswal A, Koley H, Ghosh A, Palit A, Sarkar B. Efficacy of co*cktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes Infect. (2013) 15:152–6. 10.1016/j.micinf.2012.11.002 [PubMed] [CrossRef] [Google Scholar]

215. Łusiak-Szelachowska M, Weber-Dabrowska B, Górski A. Bacteriophages and lysins in biofilm control. Virol Sin. (2020) 35:125–33. 10.1007/s12250-019-00192-3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

216. Chegini Z, Khoshbayan A, Vesal S, Moradabadi A, Hashemi A, Shariati A. Bacteriophage therapy for inhibition of multi drug-resistant uropathogenic bacteria: a narrative review. Ann Clin Microbiol Antimicrob. (2021) 20:30. 10.1186/s12941-021-00433-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]

217. Valério N, Oliveira C, Jesus V, Branco T, Pereira C, Moreirinha C, et al.. Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Virus Res. (2017) 240:8–17. 10.1016/j.virusres.2017.07.015 [PubMed] [CrossRef] [Google Scholar]

218. Engeman E, Freyberger HR, Corey BW, Ward AM, He Y, Nikolich MP, et al.. Synergistic killing and re-sensitization of pseudomonas aeruginosa to antibiotics by phage-antibiotic combination treatment. Pharmaceuticals. (2021) 14:184. 10.3390/ph14030184 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

219. Menon ND, Kumar MS, Satheesh Babu TG, Bose S, Vijayakumar G, Baswe M, et al.. A novel N4-like bacteriophage isolated from a wastewater source in South India with activity against several multidrug-resistant clinical Pseudomonas aeruginosa isolates. mSphere. (2021) 6:e01215-20. 10.1128/mSphere.01215-20 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

220. Jeon G, Ahn J. Evaluation of phage adsorption to Salmonella Typhimurium exposed to different levels of pH and antibiotic. Microb Pathog. (2021) 150:104726. 10.1016/j.micpath.2020.104726 [PubMed] [CrossRef] [Google Scholar]

221. Lin Y, Quan D, Chang RYK, Chow MYT, Wang Y, Li M, et al.. Synergistic activity of phage PEV20-ciprofloxacin combination powder formulation-A proof-of-principle study in a P. aeruginosa lung infection model. Eur J Pharm Biopharm. (2021) 158:166–71. 10.1016/j.ejpb.2020.11.019 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

222. Nikolic I, Vukovic D, Gavric D, Cvetanovic J, Aleksic Sabo V, Gostimirovic S, et al.. An optimized checkerboard method for phage-antibiotic synergy detection. Viruses. (2022) 14:1542. 10.3390/v14071542 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

223. Hong HW, Kim YD, Jang J, Kim MS, Song M, Myung H. Combination effect of engineered endolysin EC340 with antibiotics. Front Microbiol. (2022) 13:821936. 10.3389/fmicb.2022.821936 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

224. Chaudhry WN, Concepcion-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR. Synergy and order effects of antibiotics and phages in Killing Pseudomonas aeruginosa biofilms. PLoS ONE. (2017) 12:e0168615. 10.1371/journal.pone.0168615 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

225. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep. (2016) 6:26717. 10.1038/srep26717 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

226. Tkhilaishvili T, Wang L, Perka C, Trampuz A, Gonzalez Moreno M. Using bacteriophages as a trojan horse to the killing of dual-species biofilm formed by Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus. Front Microbiol. (2020) 11:695. 10.3389/fmicb.2020.00695 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

227. Akturk E, Oliveira H, Santos SB, Costa S, Kuyumcu S, Melo LDR, et al.. Synergistic action of phage and antibiotics: parameters to enhance the killing efficacy against mono and dual-species biofilms. Antibiotics. (2019) 8:103. 10.3390/antibiotics8030103 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

228. Gutiérrez D, Briers Y, Rodríguez-Rubio L, Martínez B, Rodríguez A, Lavigne R, et al.. Role of the pre-neck appendage protein (Dpo7) from phage vB_SepiS-phiIPLA7 as an anti-biofilm agent in Staphylococcal species. Front Microbiol. (2015) 6:1315. 10.3389/fmicb.2015.01315 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. (2017) 8:162–73. 10.4292/wjgpt.v8.i3.162 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

230. Vilas Boas D, Almeida C, Sillankorva S, Nicolau A, Azeredo J, Azevedo NF. Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent in situ hybridization (LNA-FISH). Biofouling. (2016) 32:179–90. 10.1080/08927014.2015.1131821 [PubMed] [CrossRef] [Google Scholar]

231. Ostapska H, Raju D, Corsini R, Lehoux M, Lacdao I, Gilbert S, et al.. Preclinical evaluation of recombinant microbial glycoside hydrolases as antibiofilm agents in acute pulmonary Pseudomonas aeruginosa infection. Antimicrob Agents Chemother. (2022) 66:e0005222. 10.1128/aac.00052-22 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

232. Aroso RT, Dias LD, Blanco KC, Soares JM, Alves F, da Silva GJ, et al.. Synergic dual phototherapy: cationic imidazolyl photosensitizers and ciprofloxacin for eradication of in vitro and in vivo E. coli infections. J Photochem Photobiol B Biol. (2022) 233:112499. 10.1016/j.jphotobiol.2022.112499 [PubMed] [CrossRef] [Google Scholar]

233. Chiang CY, Lane DJ, Zou Y, Hoffman T, Pan J, Hampton J, et al.. A novel toll-like receptor 2 agonist protects mice in a prophylactic treatment model against challenge with Bacillus anthracis. Front Microbiol. (2022) 13:803041. 10.3389/fmicb.2022.803041 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

234. Fujita K, Takata I, Yoshida I, Takashima H, Sugiyama H. TP0586532, a non-hydroxamate LpxC inhibitor, reduces LPS release and IL-6 production both in vitro and in vivo. J Antibiot. (2022) 75:136–45. 10.1038/s41429-021-00498-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]

235. Li Y, Liu Y, Ren Y, Su L, Li A, An Y, et al.. Coating of a novel antimicrobial nanoparticle with a macrophage membrane for the selective entry into infected macrophages and killing of intracellular Staphylococci. Adv Funct Mater. (2020) 30:2004942. 10.1002/adfm.202004942 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

236. Laulund AS, Schwartz F, Trøstrup H, Thomsen K, Christophersen L, Calum H, et al.. Adjunctive S100A8/A9 immunomodulation hinders ciprofloxacin resistance in Pseudomonas aeruginosa in a murine biofilm wound model. Front Cell Infect Microbiol. (2021) 11:652012. 10.3389/fcimb.2021.652012 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Liao CC Yu HP, Yang SC, Alalaiwe A, Dai YS, Liu FC, Fang JY. Multifunctional lipid-based nanocarriers with antibacterial and anti-inflammatory activities for treating MRSA bacteremia in mice. J Nanobiotechnology. (2021) 19:48. 10.1186/s12951-021-00789-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

238. Liu Y, Yang K, Jia Y, Shi J, Tong Z, Wang Z. Thymine sensitizes gram-negative pathogens to antibiotic killing. Front Microbiol. (2021) 12:622798. 10.3389/fmicb.2021.622798 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

239. Moazzezy N, Asadi Karam MR, Rafati S, Bouzari S, Oloomi M. A synthetic peptide 2Abz(23)S(29) reduces bacterial titer and induces pro-inflammatory cytokines in a murine model of urinary tract infection. Drug Des Devel Ther. (2020) 14:2797–807. 10.2147/DDDT.S259937 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

240. Yosh*tani J, Kabata T, Arakawa H, Kato Y, Nojima T, Hayashi K, et al.. Combinational therapy with antibiotics and antibiotic-loaded adipose-derived stem cells reduce abscess formation in implant-related infection in rats. Sci Rep. (2020) 10:11182. 10.1038/s41598-020-68184-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]

241. Sun M, Zhu C, Long J, Lu C, Pan X, Wu C, et al.. microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat Staphylococcus aureus-induced skin infections. Drug Deliv. (2020) 27:632–41. 10.1080/10717544.2020.1756985 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. Tambat R, Jangra M, Mahey N, Chandal N, Kaur M, Chaudhary S, et al.. Microbe-derived indole metabolite demonstrates potent multidrug efflux pump inhibition in Staphylococcus aureus. Front Microbiol. (2019) 10:2153. 10.3389/fmicb.2019.02153 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

243. Hazlett LD, Ekanayaka SA, McClellan SA, Francis R. Glycyrrhizin use for multi-drug resistant Pseudomonas aeruginosa: in vitro and in vivo studies. Invest Ophthalmol Vis Sci. (2019) 60:2978–89. 10.1167/iovs.19-27200 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

244. Parquet MDC, Savage KA, Allan DS, Ang MTC, Chen W, Logan SM, et al.. Antibiotic-resistant Acinetobacter baumannii is susceptible to the novel iron-sequestering anti-infective DIBI in vitro and in experimental pneumonia in mice. Antimicrob Agents Chemother. (2019) 63:e00855-19. 10.1128/AAC.00855-19 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

245. Laulund ASB, Trøstrup H, Lerche CJ, Thomsen K, Christophersen L, Calum H, et al.. Synergistic effect of immunomodulatory S100A8/A9 and ciprofloxacin against Pseudomonas aeruginosa biofilm in a murine chronic wound model. Pathog Dis. (2020) 78:ftz027. 10.1093/femspd/ftz027 [PubMed] [CrossRef] [Google Scholar]

The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic (2024)
Top Articles
Latest Posts
Article information

Author: Chrissy Homenick

Last Updated:

Views: 6570

Rating: 4.3 / 5 (54 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Chrissy Homenick

Birthday: 2001-10-22

Address: 611 Kuhn Oval, Feltonbury, NY 02783-3818

Phone: +96619177651654

Job: Mining Representative

Hobby: amateur radio, Sculling, Knife making, Gardening, Watching movies, Gunsmithing, Video gaming

Introduction: My name is Chrissy Homenick, I am a tender, funny, determined, tender, glorious, fancy, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.